Research
I study topologically ordered quantum spin systems using operator algebraic methods. In more detail, I use DHR-style techniques to realize categories of anyons or symmetry defects in the infinite volume. In less detail, I use operator algebras and tensor categories to model physical systems in two spatial dimensions.
Preprints
- An operator algebraic approach to symmetry defects and fractionalization (with Kyle Kawagoe and Siddharth Vadnerkar). (arXiv:2410.23380)
Peer-reviewed journal articles
- Local topological order and boundary algebras (with Corey Jones, Pieter Naaijkens, David Penneys, appendix by Masaki Izumi), Forum of Math. Sigma. 13 (2025), e135. (DOI:10.1017/fms.2025.16, arXiv:2307.12552)
- Superselection sectors for posets of von Neumann algebras (with Anupama Bhardwaj, Tristen Brisky, Chian Yeong Chuah, Kyle Kawagoe, Joseph Keslin, David Penneys), Comm. Math. Phys. 406 (2025), 185 (DOI:10.1007/s00220-025-05315-4, arXiv:2410.21454)
- Boundary algebras of the Kitaev Quantum Double model (with Chian Yeong Chuah, Brett Hungar, Kyle Kawagoe, David Penneys, Mario Tomba, Shuqi Wei), J. Math. Phys. 65 (2024), 102201. (DOI:10.1063/5.0212164, arXiv:2309.13440)
- An algebraic quantum field theoretic approach to toric code with gapped boundary, J. Math. Phys. 64 (2023), 102301. (DOI:10.1063/5.0149891, arXiv:2212.01952)